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Abstract

Background: Some heavy metals (e.g., arsenic, cadmium, lead, mercury) have been associated 

with obesity and obesity comorbidities. The analytical approach for those associations has 

typically focused on individual metals. There is a growing interest in evaluating the health effects 

of cumulative exposure to metal mixtures.

Objectives: We utilized our Environmental Risk Score (ERS), a summary measure to examine 

the risk of exposure to multi-pollutants in epidemiologic research, to evaluate the associations of 

cumulative exposure to a mixture of correlated heavy metals with obesity and its comorbidities 

including hypertension, and type-2 diabetes mellitus (T2DM) while accounting for high degree 

correlations and interactions among metal mixtures components.

Methods: We examined blood and urinary markers of 18 heavy metals among 9,537 adults in 

NHANES 2003–2014. We randomly split data into a training set for the construction of ERS 

(n=6,675) and a testing set for the evaluation of its statistical performance (n=2,862). ERS of 

heavy metal mixtures was computed for waist circumference using adaptive elastic-net (AENET) 

with 189 predictors including 18 main effects, 18 squared terms, and 153 pairwise interactions of 

heavy metals. Regression analyses with complex survey designs were performed to assess the 

associations of ERS with other obesity measures, hypertension and T2DM.

Results: 7 main effects (blood lead, blood cadmium, blood mercury, and urinary markers of 

monomethylarsonic acid (MMA), barium, mercury and thallium), 4 squared terms (blood 

cadmium, urinary cadmium, urinary antimony and urinary tungsten), and 7 pairwise interactions 
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(blood lead & urinary cadmium, blood lead & urinary MMA, blood lead & urinary uranium, 

urinary cadmium & urinary MMA, urinary dimethylarsinic acid (DMA) & urinary tungsten, 

urinary MMA & urinary cobalt, and urinary lead & urinary antimony) were selected by AENET 

for construction of ERS of waist circumference-related metal mixtures. An increase in ERS from 

10th percentile to 90th percentile in the overall study population was significantly associated with 

4.50 kg/m2 (95% CI: 4.06, 4.94) higher BMI, 4.16 mm (95% CI: 3.56, 4.76) higher skinfold 

thickness, and 4.11 kg (95% CI: 0.83, 7.40) higher total body fat, independent of age, sex, race/

ethnicity, education, smoking status, physical activity and NHANES cycle (Ps < 0.05). Significant 

associations of ERS with both hypertension and T2DM were also observed (Ps < 0.05).

Conclusions: Our study suggests that cumulative exposure to heavy metals as mixtures is 

associated with obesity and its related chronic conditions such as hypertension and T2DM. 

Additional research is needed to confirm these findings in longitudinal settings.

GRAPHICAL ABSTRACT
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1. INTRODUCTION

Obesity is of public health concern worldwide(WHO, 2017). In the United States, the 

prevalence of obesity among adults aged 20 and over increased from 30.5% in 1999–2000 to 

37.7% in 2011–2014 (Ogden et al., 2015). The health consequences of obesity are not 

trivial. Disease burdens such as hypertension and type-2 diabetes mellitus (T2DM) have 

been attributed to obesity (Must, 1999). With more than one-third of U.S. adults being 

obese, there is a great interest in identifying risk factors for obesity (Thayer et al., 2012). 

Beyond dietary factors and physical activity, previous animal and human studies suggest that 

heavy metals may play important roles in the etiology of obesity. A cross-sectional 

epidemiologic study in the general U.S. population found that barium and thallium were 

positively while cadmium, cobalt, cesium, and lead were inversely associated with body 

mass index (BMI) and/or waist circumference (WC) (Padilla et al., 2010). In the Korea 

National Health and Nutrition Examination Survey, blood mercury was positively associated 

with visceral adiposity but negatively associated with body fat percentage (J. S. Park et al., 

2017; Park and Lee, 2013). Another cross-sectional study with the elderly Koreans living in 

coastal areas reported a positive association between blood mercury and waist-to-hip ratio 

(You et al., 2011). In vivo evidence suggests that perturbation of the hypothalamic 
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dopaminergic system, endoplasmic reticulum stress, impaired adipogenesis and 

adipocytokines secretion might serve as potential mechanisms underlying the association of 

metals such as lead, arsenic, cadmium and mercury with obesity (Hou et al., 2013; Leasure 

et al., 2008; Tinkov et al., 2017, 2015). However, most of the previous studies, in both 

animal models and humans, have considered single metals as exposure variables. Little is 

known about potential health effects of simultaneous exposure to multiple metals and metal 

mixtures.

Heavy metals are widely dispersed in the environment, including soil, water, air, dust, 

human food chain, as well as manufacturing products (Alloway, 2013; Bosch et al., 2016; 

Mohod and Dhote, 2013). People could be exposed to a myriad of metals throughout their 

lifetime. Exposure to metal mixtures may result in effects that can depart from the mere 

summation of effects of single metals. A simple summation of concentrations of individual 

exposures may often reflect the components with the highest concentrations in the mixtures 

(Axelrad et al., 2009). Thus, it would be problematic in estimation of the association of 

cumulative exposure to pollutant mixtures with health outcomes if the lower concentration 

components are more potent than the higher concentration ones (Joseph M Braun et al., 

2016). Additionally, complex exposure profile of pollutant mixtures may have additive, 

synergistic or antagonistic effects which are not detected by single pollutant approaches (S. 

K. Park et al., 2017a; Valeri et al., 2017). Significant synergistic toxicity of multiple metals 

has also been revealed by experimental studies (Preston et al., 2000; Wah Chu and Chow, 

2002). Current regulatory limits of individual metals might not sufficiently protect people 

against toxicity of mixtures.

In 2011, the National Institute of Environmental Health Sciences (NIEHS) has set the field 

of combined exposures as one of the goals of the Strategic Plan (Birnbaum, 2012). 

Traditional toxicological studies and human health risk assessments have focused primarily 

on the impacts of individual metals. This could be partly due to statistical challenges such as 

correlations among metals, confounding by correlated co-pollutants, and lack of well-

established statistical methods to identify mixtures (Joseph M. Braun et al., 2016). Recently, 

several methods, such as least absolute shrinkage and selection operator (LASSO) 

(Tibshirani, 1996), elastic-net (ENET) (Zou and Hastie, 2005), adaptive elastic-net 

(AENET) (Zou and Zhang, 2009), partial least squares (Wold et al., 1984), weighted 

quantile sum regression (Carrico et al., 2015), Bayesian model averaging (Madigan and 

Raftery, 1994), Bayesian kernel machine regression (Bobb et al., 2015), and Bayesian 

additive regression tree (Chipman et al., 2010), have been proposed to explore health effects 

of exposure to multiple pollutants. These approaches were compared in predicting disease 

endpoints associated with oxidative stress-related heavy metal mixtures using NHANES 

data in our recent work, among which AENET was proved satisfactory in terms of the 

statistical performance and epidemiologic interpretability (S. K. Park et al., 2017b).

Quantifying the impact of exposure to metal mixtures is crucial for identifying risk factors 

with environmental origins for obesity and its comorbidities and developing more targeted 

public health interventions. To the best of our knowledge, no previous study has investigated 

the associations of heavy metal mixtures with obesity and related disease endpoints.
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The goal of the present study was to examine the associations of cumulative exposure to 

heavy metal mixtures with obesity and its comorbidities in the U.S. general population based 

on 6 cycles of the National Health and Nutrition Examination Survey (NHANES) data (from 

NHANES 2003–2004 to 2013–2014). To test this question, we first employed a novel 

statistical approach, AENET, which was proposed for analyzing high dimensional data while 

dealing with the collinearity problem (Zou and Zhang, 2009), to identify heavy metal 

mixtures including their dependencies related to WC. WC is a useful obesity measure which 

readily explains obesity-related health risks such as hypertension and T2DM (Janiszewski et 

al., 2007; Janssen et al., 2004). Then, we constructed an environmental risk score (ERS) 

accounting for main effects as well as pairwise interactions between metals selected by 

AENET, as an integrated measure of heavy metal mixtures effects on WC. The underlying 

idea behind the ERS is to build a predictive risk model as a weighted sum of the pollutant 

levels from simultaneous assessment of multiple pollutants. Weights are determined by the 

magnitudes (standardized regression coefficients) of the associations of each pollutant, as 

well as pollutant-pollutant interactions, with the outcome of interest from the AENET 

model. Finally, we evaluated the associations of ERS with other obesity measures and 

obesity-related comorbidities including hypertension and T2DM. The constructed ERS 

reflects predicted WC due to metal mixtures and therefore, can also be applied to other 

health outcomes relevant to obesity, such as hyperlipidemia, cardiovascular disease and 

cancer (Poirier et al., 2006).

2. METHODS

An overview of our methodology is depicted in Figure 1.

2.1. Study Population

The study sample consists of six continuous cycles (i.e. 2003–2004, 2005–2006, 20072008, 

2009–2010, 2011–2012, and 2013–2014) of NHANES, which used a stratified multistage 

probability cluster design to obtain a representative sample of the civilian, 

noninstitutionalized U.S. population (CDC/NCHS, 2018), conducted by the Centers for 

Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS). Two 

earlier cycles of NHANES (1999–2000 and 2001–2002) were not included because arsenic 

species were not measured in those cycles.

The participants were 10,541 adults aged 20 years or older who had urinary measurements 

of heavy metals. We excluded 1004 participants due to missing data in the outcome (n=470); 

exposures (n=626);; and core covariates (n=12) (the numbers are not mutually exclusive), 

leaving 9,537 eligible subjects for ERS construction in this study. To evaluate the 

performance of ERS in terms of its predictive ability, we randomly split the study population 

(n=9,537) by a ratio of 70%:30%, i.e. the training set (n=6,675) for ERS construction and 

the testing set (n=2,862) for validation. For other measures of adiposity in NHANES, BMI 

was available in all six cycles (2003–2004 to 2013–2014, n=9,513), skinfold thickness in 4 

cycles (2003–2004 to 2009–2010, n=3,639) and total body fat in one cycle (2003–2004, 

n=509). For obesity-related comorbidities, we additionally excluded 8 participants with 

missing information on hypertension and T2DM.
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2.2. Heavy Metal Measurements

A comprehensive set of 18 heavy metals were measured in both urine (antimony, total 

arsenic, arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 

barium, cadmium, cobalt, cesium, molybdenum, mercury, lead, thallium, tungsten, uranium: 

n=15) and whole blood (cadmium, lead, total mercury: n=3). All the heavy metals were 

analyzed with inductively coupled-plasma dynamic reaction cell-mass spectrometry (ICP-

DRC-MS) by the Division of Laboratory Sciences, National Center for Environmental 

Health, Atlanta, Georgia (CDC/NCHS, 2018). Arsenous acid, arsenic acid, arsenocholine, 

beryllium and platinum in urine were not included in this study because more than 80% 

observations were below limits of detection (LOD). Metal concentrations below LOD were 

imputed using LOD divided by the square root of two by NHANES. We used these imputed 

values in our analyses in consistent with CDC’s National Report on Human Exposure to 

Environmental Chemicals (CDC, 2018).

2.3. Obesity measures

WC was measured during minimal respiration to the nearest 0.1 cm at the level of the iliac 

crest (CDC/NCHS, 2018). Height was measured to nearest 0.1 cm and body weight was 

measured to nearest 0.1 kg (CDC/NCHS, 2018). BMI was calculated as weight in kilograms 

divided by the square of height in meters. Triceps skinfold thickness was measured to the 

nearest 0.1 mm using skinfold calipers (CDC/NCHS, 2018). The measurement was taken 

twice on the right side of the participant’s body and averaged. Total body fat mass was 

measured in dual-energy X-ray absorptiometry scanning by using a Hologic QDR 4500A 

fan-beam densitometer (Hologic Inc, Bedford, MA) and estimated to the nearest 0.1 kg 

(CDC/NCHS, 2018). Abdominal obesity was defined as a WC of ≥ 102 cm for males and ≥ 

88 cm for females according to the American Heart Association’s (AHA) definition (Grundy 

et al., 2005). We also used BMI ≥ 30 kg/m2 based on the WHO definition of obesity (WHO 

Expert Consultation, 2004).

2.4. Obesity Comorbidities

Blood pressures were measured three consecutive times (sometimes four times) with each 

participant in a seated position by using a standardized protocol that followed the AHA 

guidelines (CDC/NCHS, 2018). We calculated means of systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) by averaging up to three measures after disregarding the first 

reading. Participants were considered to have hypertension if at least one of the following 

criteria were met: SBP/DBP ≥ 140/90 mmHg, self-reported physician diagnosis of 

hypertension, or self-reported use of hypertension medication. Prevalent T2DM was defined 

as self-reported physician diagnosis of diabetes, or hemoglobin A1c (HbA1c) level ≥ 6.5% 

(CDC/NCHS, 2018).

2.5. Covariates

Covariates were chosen a priori and included age at interview, sex, race/ethnicity (Mexican 

American, Other Hispanic, non-Hispanic white, non-Hispanic black, other), education (less 

than high school, high school, some college or higher), smoking status (never, former, 

current), physical activity (none, moderate, vigorous), NHANES cycles and urinary 
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creatinine. Information on age, sex, race/ethnicity, education, smoking status and physical 

activity was collected using self-administered questionnaires (CDC/NCHS, 2018). We used 

a Directed Acyclic Graph (http://www.dagitty.net/dags.html) to show the hypothesis 

relations between use of metals, confounders, and WC (See Figure A.1). In our analysis, 

current smokers were participants who reported smoking at least 100 cigarettes during their 

lifetime and, at the time of the interview, reported smoking either every day or some days. 

Former smokers were those who had been smoked at least 100 cigarettes during their 

lifetime but did not smoke at the time of the interview. Never smokers were those who 

reported never having smoked 100 cigarettes during their lifetime. Moderate physical 

activity physical activity was defined as tasks that caused light sweating or a slight to 

moderate increase in breathing or heart rate. Vigorous physical activity was defined as tasks 

that caused heavy sweating or large increases in breathing or heart rate (CDC/NCHS, 2018). 

Urine creatinine concentration was identified as a maker of urine dilution and determined by 

a Jaffe rate reaction with a Beckman Synchron Analyzer (CDC/NCHS, 2018).

2.6. Statistical Analyses

Univariate statistics were calculated and examined in each NHANES survey cycle and all 

the cycles combined. Geometric means and standard deviations were calculated for urinary 

and blood measurements of metals. Spearman pairwise correlations among 18 metals were 

calculated and presented via a correlation-matrix heat map.

2.6.1. Construction of ERS—AENET was chosen as the primary method of selecting 

obesity-related heavy metals and constructing ERS. Several statistical methods have been 

proposed to explore the health effects of multiple pollutants in epidemiologic studies. 

Ordinary least squares (OLS)-based variable selection methods are commonly used but 

prone to over-fitting, leading to a poor performance in prediction accuracy and variance 

inflation with a large number of predictors, especially when predictors are highly correlated 

(multicollinearity) (Tibshirani, 1996). Ridge regression, as a shrinkage regression method, 

yields more precise estimates and better prediction accuracy than OLS, which in turn 

improves prediction accuracy by minimizing the ridge loss function (mean squared error 

plus a penalty term) (Hoerl and Kennard, 1970). However, ridge regression does not perform 

variable selection because it cannot shrink coefficient estimates exactly to zero (Tibshirani, 

1996). LASSO, proposed by Tibshirani, shrinks coefficients towards exact zeroes, and thus 

promises to be a useful tool for variable selection (Tibshirani, 1996). However, with highly 

correlated variables as predictors, LASSO tends to select only one out of these correlated 

variables and ignore the others (Friedman et al., 2010). ENET is a hybrid penalized 

regression method that blends LASSO and ridge regression to overcome the limitation of 

LASSO on data with highly correlated variables (Zou and Hastie, 2005). Similar to LASSO, 

ENET executes variable selection, but it also has the ability to select a group of non-zero 

collinear variables (Zou and Hastie, 2005). Adaptive elastic net (AENET), as its name would 

suggest, is an adaptive version of ENET that not only deals with the collinearity problem 

over ENET but satisfies the asymptotic normality assumption that allows us to conduct 

statistical inference and hypothesis testing by providing large sample standard errors (SEs) 

and p-values (Zou and Zhang, 2009). Adaptive weights ensure smaller coefficients are 

shrunk faster to zero, whereas larger coefficients are penalized less. It should be noted that 
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AENET performs variable selection by shrinking certain coefficients to zero but not based 

on p-values of coefficients (like forward selection, backward elimination, and stepwise 

selection). Additionally, penalized regression methods including LASSO, ENET, and 

AENET are different from environment-wide association study, which relies on linear 

regression models fitted independently for each individual pollutant and requires a 

correction for multiple comparisons (Agier et al., 2016). In the current analysis, 189 

predictors served as candidates in the model selection, including 18 main effects, 18 squared 

terms, and 153 pairwise linear interactions of heavy metals. Four measures of adiposity were 

analyzed, including WC, BMI, skinfold thickness and total body fat, among which WC was 

chosen as the primary outcome for ERS construction due to data availability. WC may better 

predict risks of obesity-related health outcomes including hypertension, dyslipidemia, 

T2DM and cardiovascular disease than BMI (Janiszewski et al., 2007; Janssen et al., 2004; 

Menke et al., 2007; Zhu et al., 2002). Given the highly skewed distributions of WC and 

heavy metals, logarithmic transformations with base 10 were applied because the shapes of 

dose-response relationships were closer to be linear after log-transformation. We chose base 

10 rather than natural log for easier interpretation of regression coefficients.

For subject i (i = 1, … , 6,675) in our study population, let Yi represent the outcome WC, Ei
j

(j = 1, … , 18) be the j-th metal, and Xi denote all predictors including Ei, Ei × Ei and the 

vector of confounders (i.e. age, sex, race/ethnicity, education, smoking status, physical 

activity, NHANES cycles and urinary creatinine). Then the beta coefficients from ANENT 

were defined by

β = 1 +
λz
N {argmin( ∑

i = 1

N
(Yi − Xiβ)2 + λ1 ∑

j = 1

p
ω j ∣ β j ∣ + λ2 ∑

j = 1

p
β j

2)},

where ω j is the weight of j-th metal. These weights can allow coefficients of relatively less 

important metals to be shrunk to zeros more efficiently. By adding the penalty parameter λ1 

with the sum of the absolute values of the coefficients into the ordinary least squares, we can 

select the metals associated with WC while shrinking some others to zero. By adding the 

other penalty parameter λ2 with the sum of square of regression coefficients, we can take 

into account correlations among metals while still performing variable selection. Both λ1 

and λ2 were ascertained based on 5-fold cross-validation for minimal prediction errors. All 

the confounders were centered on their respective mean values and were always adjusted for 

(“forced”) in the selected models based on our prior knowledge (Figure A.1). The R package 

‘gcdnet’ was used to implement AENET (Yang and Zou, 2015). The sample R code for 

construction of the ERS using AENET is available at https://github.com/XinWangUmich/

Environmental-Risk-Score-AENET-. Complex survey design of NHANES was not 

considered in the variable selection due to difficulty in handling of survey weights 

automatically.

ERS was calculated using beta coefficients adopted from AENET for not only main effects 

but also squared terms of metal concentrations as well as all the combinations of pairwise 

linear interactions. The squared terms accounted for non-linear associations between metals 
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and WC, and interaction terms implied potential departures from additive joint effects. All 

the terms were standardized as Z-scores for better goodness-of-fit and less collinearity issue. 

Then ERS was computed as a weighted sum of non-zero predictors selected from AENET 

by

ERSi = ∑ j = 1
P β jZi

j + ∑k = 1
P − 1 ∑l = k + 1

P βklZi
kZi

l + ∑m = 1
P βm Zi

m 2,

whereZi
j (j= 1,..p) is a standardized log-transformed concentration of the j-th metal. β jis the 

beta coefficient of the j-th metal. βklis the beta coefficient of interaction between metals k 

and l. Andβm is the coefficient of squared term of the m-th metal. Note that coefficients of 

less important predictor terms were shrunk to zero by AENET. From this equation, the ERS 

for subject i can be interpreted as the predicted WC corresponding to the exposure levels of 

selected non-zero heavy metal predictors given all the confounders were fixed at their mean 

values in the population. The variables with non-zero coefficients were selected and their 

corresponding coefficients and P-values were estimated.

2.6.2. Assessment of ERS Performances—In order to evaluate whether the addition 

of ERS to other covariates could explain the extra variance of WC and improve the 

discriminatory capability for abdominal obesity, we randomly split the study population into 

a training set (n=6,675) for ERS construction and a testing set (n=2,862) for validation 

(Figure 1). Several metrics were calculated and compared in both datasets. First, we used 

linear regression for log-transformed WC and fit ERS as a continuous variable. Adjusted R2, 

mean squared error (MSE) and mean squared prediction error (MSPE) were calculated as 

indicators of goodness-of-fit in the models in both training and testing datasets. Next, we 

dichotomized WC at 88 cm for women and 102 cm for men as per AHA’s definition of 

abdominal obesity (Grundy et al., 2005), and identified the outcome as whether or not being 

abdominally obese. Logistic regression analyses were conducted using this binary 

abdominal obesity variable as the outcome and continuous ERS as the predictor. Area under 

the receiver operating characteristic (AUC) was computed to assess the accuracy of ERS in 

predicting abdominal obesity.

2.6.3. Associations of ERS with Obesity Measures and Obesity 
Comorbidities—Survey linear regression was used to examine the associations of ERS 

with other continuous obesity measures (BMI, skinfold thickness, total body mass) and 

blood pressures (SBP and DBP). Survey logistic regression analyses were conducted for 

hypertension and T2DM. All the models were adjusted for age at interview, sex, race/

ethnicity, education, smoking status, physical activity, NHANES cycle and urinary 

creatinine. We report effect estimates (mean difference or odds ratio (OR)) comparing the 

90th vs the 10th percentile of ERS and their 95% confidence intervals (CIs). All regression 

analyses were performed using the ‘survey’ package in R version 3.4.0 to account for the 

complex sampling design and weights in NHANES (CDC/NCHS, 2018).
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3. RESULTS

3.1 Study Population Characteristics

Characteristics of the study population overall and by study cycle are summarized in Table 

1. Participants had a mean age of 49.2 years and a standard deviation (SD) of 18.0 years. 

The demographics were similar across the six NHANES cycles, except oversampling of 

other Hispanics since 2007 (varying from 3.1% in the cycle 2005–2006 to 11.5% in the 

cycle 20072008), smoking and physical activity behaviors, as well as education. Data by 

survey cycle revealed decreasing trends in the prevalence of smokers (either current or 

former or both) and low education attainment (less than high school). Physical inactivity 

showed a sharp increase in the cycle of 2007–2008 followed by a notable decreasing trend in 

the later cycles. Overall, means (SDs) of WC, BMI, triceps skinfold thickness and total body 

fat were 98.7 (15.9) cm, 28.8 (6.6) kg/m2, 19.3 (8.4) mm, and 24.9 (11.9) kg, respectively. 

The prevalences of hypertension and T2DM were 40.8% and 16.0%.

3.2 Heavy Metal Concentrations and Correlations

The geometric means and geometric standard deviations of 18 heavy metal concentrations 

are presented in Table 2. Blood and urinary lead concentrations remarkably decreased across 

all 6 NHANES cycles, reflecting a reduction in environmental sources of lead in the US 

(Calafat, 2012). In contrast, urinary arsenobetaine concentrations increased in the latest two 

cycles (2011–2012 and 2013–2014), where excessive seafood consumption could serve as a 

major determinant among the US general population (Awata et al., 2017).

Figure 2 is a heatmap showing the correlations among the 18 heavy metals using a Spearman 

correlation matrix. A complex exposure profile was observed among metal concentrations, 

with pairwise Spearman correlations ranging from slightly negative (ρ = −0.09) to strong 

positive correlations (ρ = 0.82). Of the 153 unique pairwise correlations, 143 were 

significant (Ps<0.05) after Bonferroni correction. We detected moderate to high correlations 

between blood lead and blood cadmium (Spearman correlation ρ = 0.35); between blood 

mercury and total arsenic (ρ = 0.42); between blood mercury and arsenobetaine (ρ = 0.47); 

and among arsenic species (ρs with a range of 0.42 to 0.82). The correlations among urinary 

measurements of heavy metals were generally moderate to high, with the strongest 

correlation between urinary cesium and thallium (ρ = 0.77).

3.3 Selection of Heavy Metals and ERS Construction

Table 3 summarizes the output of variable selection among main effects, squared terms and 

pairwise linear interactions of 18 heavy metals in relation to WC. A total of 18 variables 

were selected out of 189 predictor candidates: 7 main effects (blood lead (β = −0.008, 95% 

CI: − 0.010, −0.006), blood cadmium (β = −0.008, 95% CI: −0.010, −0.006), blood mercury 

(β = −0.003, 95% CI:−0.005, −0.001), urinary MMA (β = −0.010, 95% CI: −0.011, −0.008), 

urinary barium (β = 0.001, 95% CI: −0.001, 0.003), urinary mercury (β = −0.001, 95% CI: 

−0.003, 0.001), and urinary thallium (β = 0.003, 95% CI: 0.001, 0.005)); 4 squared terms 

(antimony (β = −0.002, 95% CI: − 0.004, 0), urinary tungsten (β = −0.001, 95% CI: −0.003, 

−0.001), urinary cadmium (β = −0.001, 95% CI: −0.003, 0.001) and blood cadmium (β = 

0.001, 95%: −0.001, 0.003)); and 7 pairwise linear interactions (between blood lead and 
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urinary MMA (β = 0.001, 95% CI: −0.001, 0.002), blood lead and urinary cadmium (β = 

−0.003, 95% CI: −0.005, −0.001), blood lead and urinary uranium (β = −0.0005, 95% CI: 

−0.003, 0.001), between urinary cadmium and urinary MMA (β = 0.0005, 95% CI: −0.001, 

0.002), between urinary DMA and urinary tungsten (β = 0.004, 95% CI: 0.002, 0.006), 

between urinary MMA and urinary cobalt (β = −0.003, 95% CI: −0.005, −0.001), and 

between urinary lead and urinary antimony (β = −0.001, 95% CI: −0.003, 0.001)). It should 

be noted that beta coefficients of selected predictors were relatively small because we 

applied log-transformation with base 10 on both continuous WC and metal concentrations 

while metal concentrations were further standardized as Z-scores.

3.4 ERS Performances

The ERS ranged from −0.12 to 0.07 with a mean (SD) of 0 (0.02) in the training dataset 

(n=6,675), from −0.10 to 0.07 with a mean (SD) equal to 0 (0.02) in the testing set 

(n=2,682), and from −0.12 to 0.08 with a mean (SD) of 0 (0.02) in the entire dataset. Higher 

values in ERS indicate more susceptibility to abdominal obesity (higher WC) in relation to 

cumulative exposure to metal mixtures. Note that the higher ERS index does not necessarily 

mean higher metals exposures because the ERS was calculated as the predicted WC 

corresponding to the weighted selected metals concentrations. For example, AENET 

coefficient for urinary mercury (only the main effect was selected) equals to −0.002 (95% 

CI: −0.004, 0) (Table 3). Thus urinary mercury concentration negatively contributed to the 

ERS, which means the lower the urinary mercury concentration, the higher the ERS. A 

different example could be blood cadmium, that both its main effect (β = −0.007, 95% CI: 

−0.008, −0.005) and squared term (β = 0.001, 95%: −0.001, 0.003) were selected. Therefore, 

we expect that the ERS index first decreases and then increases according to blood cadmium 

concentration (Table 3, Figure A.2).

Table 4 provides information on the statistical performance of ERS in the prediction of log-

transformed WC and abdominal obesity. ERS was significantly (p < 0.001) and strongly 

associated with all three outcomes after adjusting for age, sex, race/ethnicity, education, 

smoking status, physical activity, NHANES cycles, and urinary creatinine. When predicting 

log-transformed WC, adjusted R2 increased modestly in both training (0.12 to 0.18) and 

testing sets (0.11 to 0.16) when ERS was added to the models. Additionally, MSE and 

MSPE decreased slightly with the addition of ERS in the testing dataset (from 0.064 to 

0.062). In the prediction of whether or not having abdominal obesity in the testing dataset, 

the addition of ERS to the model also offered a modest improvement in terms of AUC (from 

0.71 to 0.74), suggesting that exposure to heavy metal as mixtures provides additional 

predictive information about abdominal obesity.

3.5 Associations between ERS and Obesity Measures

The ERS index was also significantly associated with other obesity measures including 

BMI, skinfold thickness, total body fat, and binary obesity (BMI>30 vs. BMI≤30) (Ps<0.05, 

Table 5). Higher ERSs were significantly linked to an elevation in obesity measures and 

increased prevalence of obesity. More specifically, an increase in the ERS in the overall 

study population from −0.02 (10th percentile) to 0.02 (90th percentile), which represents the 

10th to 90th percentiles of predicted WC due to the difference in exposure levels of heavy 
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metal mixtures, was significantly associated with 4.50 kg/m2 (95% CI: 4.06, 4.94) higher 

BMI, 4.16 mm (95% CI: 3.56, 4.76) higher skinfold thickness, and 4.11 kg (95% CI: 0.83, 

7.40) higher total body fat among US adults, with adjustment for age, sex, race/ethnicity, 

education, smoking status, physical activity, NHANES cycle and urinary creatinine. The 

adjusted OR of obesity comparing 90th vs 10th percentiles of ERS was 4.20 (95% CI: 3.51, 

5.02).

3.6 Associations between ERSs and Obesity Comorbidities

Associations of ERS with obesity comorbidities including blood pressures, hypertension and 

T2DM are shown in Table 6. Higher ERSs were significantly associated with elevated SBP 

as well as hypertension and T2DM (Ps<0.001). An increase from the 10th (−0.02) to the 90th 

percentile (0.02) of ERS in the overall study population was significantly associated with a 

2.22 mmHg (95% CI: 0.90, 3.53) increase in SBP after controlling for age, sex, race/

ethnicity, education, smoking, physical activity, NHANES cycle, and urinary creatinine. The 

adjusted ORs for hypertension and T2DM comparing the 90th with the 10th percentiles of 

the ERS were 1.55 (95% CI: 1.28, 1.88) and 3.63 (95% CI: 2.86, 4.66), respectively. No 

significant association was observed for DBP.

4. DISCUSSION

To the best of our knowledge, this study is the first to assess associations of cumulative 

exposure to heavy metals as mixtures with obesity and obesity comorbidities. The present 

study created an updated ERS in relation to WC by using an advanced model selection 

approach (i.e. AENET) to handle statistical challenges including complex correlation 

structures among metals, non-linear relationships, and confounding by co-pollutants. The 

ERS was computed as a weighted sum of effects of selected non-zero predictors on WC as a 

measure of abdominal obesity. In addition to the main effects and pairwise interactions as 

we initially proposed in our previous study (S. K. Park et al., 2017b), we considered squared 

terms of metal concentrations to capture potential non-linear associations and further 

improve risk prediction performance. The constructed ERS was proved satisfactory in terms 

of reproducibility and validity in our study population. It can reflect individual susceptibility 

to abdominal obesity (higher WC) in relation to cumulative exposure to metal mixtures 

while providing modest discriminatory ability in addition to conventional obesogenic 

factors. Our study results indicate that cumulative exposure to metal mixtures may play a 

role in both obesity and its related chronic conditions such as hypertension and T2DM.

Although individual metal effects were not our primary interest, the AENET selected main 

effects of blood lead, blood cadmium, blood mercury and urinary metals including barium, 

thallium, and mercury on WC in our multipollutant approach accords with previous 

population-based studies. Urinary barium and thallium were noted to be positively while 

cadmium and lead were inversely associated with BMI and/or WC among the US general 

population in NHANES 1999–2002 (Padilla et al., 2010). The inverse associations between 

blood lead and both BMI and obesity were also observed in children, adolescents and adults 

in NHANES 1999–2006 (Scinicariello et al., 2013). In a national study based in South 

Korean adults, inverse associations of both blood lead and blood mercury with body fat 
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percentage were observed (Park and Lee 2013). Another cross-sectional study conducted in 

Poland designed to examine the potential risk factors of metabolic syndrome also reported a 

significant and negative correlation between blood mercury and waist-to-hip ratio among a 

population of aging men (Rotter et al. 2015).

However, those previous epidemiological studies have focused primarily on individual 

metals while the complexity of mixed exposures has not been adequately captured. In the 

present study, the squared terms of urinary antimony, urinary tungsten, and blood/urinary 

cadmium as well as pairwise interactions between blood lead and urinary metals including 

cadmium, MMA and uranium, between urinary cadmium and urinary MMA, between 

urinary DMA and urinary tungsten, between urinary MMA and urinary cobalt, and between 

urinary lead and urinary antimony, were also identified, suggesting the possibility of 

interactions and nonlinear associations among multiple concurrent exposures. For example, 

we observed that the association between blood cadmium and WC may be non-linear 

because both main effect and squared term of blood cadmium were selected). This non-

linear relationship between blood cadmium and WC suggests an inverse association at low-

moderate cadmium levels which has been previously observed in the U.S. general population 

(Padilla et al., 2010), while a flattened effect at higher exposure levels (Figure A.2). This 

could, possibly, explain the non-significant relationships reported in other populations 

experienced greater cadmium body burden compared to U.S. (Lee and Kim, 2016, 2013). 

Such findings may also be explained as a result of complex interactions between mixture 

components. For example, our finding of significant interactions between blood lead and 

urinary cadmium, MMA and uranium on WC suggests that the effect of blood lead may 

change more than additively in populations with different levels of cadmium, MMA and 

uranium. Note that our primary goal when constructing ERS was to integrate early health 

effects of exposure to multiple environmental pollutants simultaneously on a common 

disease pathway (i.e., obesity) while accounting for high degree correlations and potential 

interactions among metals, to better capture the association between exposure to multiple 

metals as mixtures and health outcomes. Allowing for potential interactions and nonlinear 

associations may reconcile the context-dependent nature of mixture components effects 

when integrating effects of exposure to heavy metals as mixtures. Biologically based dose-

response functions, such as physiologically based pharmacokinetic (PBPK) modeling, may 

better capture a dose-response curve for specific metals or metal-metal interactions but 

require more complex modeling that is hard to test and toxicological data that are often not 

available. Alternatively, categorizing continuously measured variables is often used in 

epidemiologic research to capture nonlinear dose-response associations. However, such an 

approach could not be the best strategy in the construction of ERS. For example, it is not 

statistically efficient to incorporate main effects and interaction terms in AENET if all the 

metals are treated as categorical variables.

In our study, when ERS was added to the conventional risk factors of obesity including age, 

sex, race/ethnicity, socioeconomic status (education level), physical inactivity and smoking 

status, modest improvements in the prediction of WC and abdominal obesity were observed 

as indicated by improvements in adjusted-R2 and AUC in linear regression and logistic 

regression models, respectively. This finding, which paralleled significant associations 

between ERS and all the other obesity measures including BMI, skinfold thickness and total 
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body fat in current study, also indicated that a combined real-life exposure to heavy metals 

as mixtures is not only associated with one specific obesity measure – WC, but also 

associated with obesity, independent of other known factors.

While the underlying mechanisms are still not well understood, there is biological 

plausibility for heavy metals in obesity pathogenesis. Main effects of lead, mercury and 

MMA negatively contributed to the ERS in the current study. Several animal studies found 

that lead exposure may contribute to body weight loss (Donald et al., 1988; Hamir et al., 

1981). The linkage between body weight and lead exposure may be through perturbation of 

the hypothalamic dopaminergic system. Rat pups exposed to the lowest gestational lead 

levels had a statistically significant increase in weight, and decreased levels of striatal 

dopamine and its main metabolite, 3,4-dihydroxyphenylacetic acid, compared to those 

exposed to the highest lead levels (Leasure et al., 2008). Mercury, as an important endocrine 

disruptor, has also been indicated the potential role in the pathogenesis of obesity (Tinkov et 

al., 2015). Decreases in adipose tissue content, adipocyte size and leptin secretion were 

reported in mice following mercuric chloride administration (Kawakami et al., 2012). 

Arsenic was also found to affect adiposity. An animal study using a mice model 

demonstrated that low-level inorganic arsenic and MMA could trigger endoplasmic 

reticulum stress and induce C/EBP homologous protein, a protein that inhibits CCAAT/

enhancer-binding protein P transcriptional activity, as a result of unfolded protein response, 

which in turn impairs adipogenesis (Hou et al., 2013). The impact of heavy metals on 

obesity may also through their toxicities on the growth trajectory. Exposure to toxic metals 

in early pregnancy could affect the fertilized egg or zygote implantation, impair the placental 

growth and placental function, alter the uterine environment, dysregulate the fetal 

epigenome, accumulate in placental transfer cells causing a decrease in uterine blood flow, 

and decrease the transfer of nutrients to the fetus, and thus affect fetal growth and 

development (Zheng et al., 2016).

Barium and thallium were positively associated with our constructed ERS, suggesting higher 

WC with high exposure to these metals. One possible explanation is that these metals could 

promote oxidative stress, limit ATP production and increase lipid production (Mailloux et 

al., 2007). The reactive oxygen species generated by metals can further disrupt 

mitochondrial functions, alter activity of enzymes such as aconitase, and impair the 

tricarboxylic acid cycle via oxidative phosphorylation (Ercal et al., 2001). For other metals 

and metal-metal interactions, the underlying mechanisms of observed associations were less 

well-established.

The primary goal of epidemiologic research is to identify causal relationships. Although 

traditional research is often based on a priori knowledge and driven by a well-defined 

hypothesis, a data-driven method might be useful especially when limited information is 

available. The ERS in our study provides a good approximation of underlying causal 

relationships by capturing complex relationships and patterns among pollutants within 

mixtures (Shmueli, 2010). The ERS, as the prediction models, can also be used to assess the 

risk stratification and discrimination power for predicting specific health endpoints in future 

studies.
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Nevertheless, our study has numerous limitations. First, the cross-sectional nature of 

NHANES data precludes the ability to determine chronicity of heavy metal exposures and 

persistence of obesity and its comorbidities. Therefore reverse causation could be an 

explanation for our results since chronic conditions such as diabetes may affect metal 

excretions in urine (Chaumont et al., 2012). Second, the ERS construction was based on WC 

due to data availability. More sensitive measures of obesity such as dual-energy X-ray 

absorptiometry scanning that directly measure body fat contents may improve risk 

prediction and thus better discriminate metal mixture health risk. Third, the metals used in 

the current study have various half-lives in human body and therefore, have different degrees 

of measurement error which may affect the variable selection in AENET algorithms 

(Sorensen et al., 2015). Most urinary metals used in this study have short half-lives and thus 

their urinary concentrations mainly reflect recent exposures. Such metals might not be 

detected to be associated with WC in AENET and could be missed in relation to other health 

endpoints if long-term cumulative exposure to low levels causes those health outcomes. 

Fourth, our models were limited to pairwise interactions including quadratic terms of the 

main effects. However, higher order interactions such as three-way interactions or higher 

than quadratic polynomial forms may exist. Due to such possible model misspecification, 

more complicated but important interactions may not be selected in AENET and not 

contribute to the corresponding ERS. It should be noted that the selected pairwise 

interactions in AENET reflect statistical interactions rather than biological interactions. 

Finally, we constructed the ERS for waist circumference as a common contributing factor to 

obesity and obesity comorbidities. Note that ERS was disease-specific, so it might not be 

able to predict chronic conditions other than obesity and its comorbidities. Future studies 

should explore the use of ERS in a longitudinal setting and adaptively weighted to provide a 

more comprehensive risk assessment for a complex chronic disease.

5. CONCLUSIONS

In conclusion, we constructed an ERS by a novel statistical approach (i.e. AENET) for 

assessing the associations of cumulative exposure to mixtures of 18 heavy metals with 

obesity and its comorbidities among US adults in NHANES 2003–2014. The ERS as a 

measure of integrated effects of heavy metals mixtures on WC were significantly associated 

with other obesity measures including BMI, skinfold thickness and total body fat as well as 

obesity-related chronic conditions, hypertension and T2DM, independent of other important 

risk factors. Our findings require confirmations in other longitudinal cohort studies but have 

important public health implications, given the high burden of obesity and widespread 

exposure to heavy metals. Future studies are also needed to examine the underlying 

biological mechanisms by which different metals as well as metal-metal interactions are 

associated with obesity.

ACKNOWLEDGMENTS

This study was supported by grants from the National Institute of Environmental Health Sciences (NIEHS) R01-
ES026578, R01-ES026964, R21-ES020811 and P30-ES017885, and by the Center for Disease Control and 
Prevention (CDC)/National Institute for Occupational Safety and Health (NIOSH) grant T42-OH008455 and 
National Science Foundation grant NSF DMS 1406712.

Wang et al. Page 14

Environ Int. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDICES

Figure A.1. 
A directed acyclic graph (DAG) for evaluation of covariate selection in the analysis of metal 

effects on waist circumference. Exposure is metal concentrations. Outcome is waist 

circumference. Factors taken into account include age at interview, sex, race/ethnicity, 

education, smoking status, and physical activity. The minimal and sufficient adjustment set 

contains all the variables included in the DAG. This figure is constructed through Directed 

Acyclic Graph (http://www.dagitty.net/dags.html ).
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Figure A.2. 
Predicted log-10 transformed waist circumference and 95% confidence band for 

standardized log-10 transformed blood cadmium concentration with the other metals fixed at 

the mean concentrations, after controlling for age, sex, race/ethnicity, education, smoking 

status, physical activity, NHANES cycles and urinary creatinine. Standardized log-10 

transformed blood cadmium concentration in current analysis range from −2.07 to 3.98.
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Highlights

• Exposure to multiple metals resulted in effects that departed from mere 

summation of effects of single metals.

• We constructed an ERS to evaluate the associations of cumulative exposure to 

mixtures of 18 metals with obesity and its comorbidities.

• ERS was significantly associated with waist circumference, BMI, skinfold 

thickness and total body fat.

• ERS was significantly associated with obesity comorbidities including 

hypertension and type-2 diabetes.

• Our study suggests the potential role of exposure to heavy metals mixtures as 

a contributing factor to obesity and its related chronic conditions.
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Figure 1. 
Schematic diagram of study methodology in NHANES 2003–2014. AENET, adaptive 

elastic-net; BMI, body mass index; ERS, environmental risk score; T2DM, type 2 diabetes 

mellitus; WC, waist circumference.
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Figure 2. 
Spearman correlation matrix of metal biomarkers in NHANES 2003–2014 (n=9,537). 

Cadmium*, blood cadmium; Lead*, blood lead; Mercury*, blood mercury. All other metals 

were measured in urine. Mo, molybdenum.
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Table 3.

Selected predictors of main effects, square terms and pairwise interactions of heavy metals for waist 

circumference in adaptive elastic-net in NHANES 2003–2014 (n=6,675).

Selected non-zero heavy metal

predictors by AENET 
a

β for 1-SD increase in
log10-transformed metals

(95% CI)

P-value

Main effects

  Blood Lead −0.008 (−0.010, −0.006) <.0001

  Blood Cadmium −0.008 (−0.010, −0.006) <.0001

  Blood Mercury −0.003 (−0.005, −0.001) <.0001

  MMA
b −0.010 (−0.011, −0.008) <.0001

  Barium 0.001 (−0.001, 0.003) 0.09

  Mercury −0.001 (−0.003, 0.001) 0.23

  Thallium 0.003 (0.001, 0.005) 0.004

Square Terms

  Blood Cadmium 0.002 (0.001, 0.003) 0.002

  Cadmium −0.002 (−0.003, −0.001) 0.008

  Antimony −0.002 (−0.003, −0.001) <.0001

  Tungsten −0.001 (−0.003, −0.001) 0.02

Pairwise Interactions

  Blood Lead & MMA 0.001 (−0.001, 0.002) 0.52

  Blood Lead & Cadmium −0.003 (−0.005, −0.001) 0.005

  Blood Lead & Uranium −0.0005 (−0.003, 0.001) 0.59

  Cadmium & MMA 0.0005 (−0.001, 0.002) 0.50

  DMA & Tungsten 0.004 (0.002, 0.006) <.0001

  MMA & Cobalt −0.003 (−0.005, −0.001) <.0001

  Lead & Antimony −0.001 (−0.003, 0.001) 0.16

a
Heavy metal predictors were selected by adaptive elastic-net in training set (n=6,675)

b
MMA: monomethylarsonic acid
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Table 4.

Evaluation of statistical performance of environmental risk scores (ERSs) in both training dataset (n=6,675) 

and testing dataset (n=2,862) in NHANES 2003–2014.

Model without ERS
a

Model with ERS
a

Training set
(n=6,675)

Testing set
(n=2,862)

Training set
(n=6,675)

Testing set
(n=2,862)

Log10-transformed waist circumference

Percent change in outcome (95% CI)
b -- -- 2.1%

(1.9%, 2.3%)
1.9%

(1.6%, 2.2%)

P-value -- -- <0.0001 <0.0001

Adjusted-R2 0.12 0.11 0.18 0.16

MSE/MSPE 0.065 0.064 0.063 0.062

Abdominal obesity: Women ≥ 88 cm, Men ≥ 102 cm in waist circumference

Odds ratio
b

(95% CI)

-- -- 1.71
(1.60, 1.84)

1.57
(1.42, 1.73)

P-value -- -- <0.0001 <0.0001

AUC 0.71 0.71 0.75 0.74

a
All the models were adjusted for age, sex, race/ethinicity, education, smoking status, physical activity, NHANES cycles and urinary creatinine.

b
Effect estimates (percent change, β, odds ratio) are based on a standardized increment which is equivalent to one standard deviation increase in 

ERS.
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Table 5.

Adjusted mean difference
a
 in obesity measures by environmental risk score.

Obesity measures β, 90th vs 10th percentile
(95% CI)

P- value

BMI
b
, kg/m2 4.50 <.0001

(4.06, 4.94)

Skinfold thickness
c
, mm

4.16 <.0001

(3.56, 4.76)

Total body fat
d

, kg
4.11 0.02

(0.83, 7.40)

OR, 90th vs 10th percentile P-value

(95% CI)

Obesity
e 4.20 <.0001

(3.51, 5.02)

a
All models were adjusted for age, sex, race/ethnicity, education, smoking status, physical activity, NHANES cycles and urinary creatinine. 

NHANES complex survey designs were also taken into account in the models.

b
Body mass index (BMI) was measured for all six cycles (2003–2004 to 2013–2014, n=9,513).

c
Skinfold thickness was measured for 4 cycles (2003–2004 to 2009–2010, n=3,639).

d
Total body fat was measured for (2003–2004, n=509).

e
Obesity was defined as BMI ≥ 30 kg/m2.
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Table 6.

Adjusted effect estimates
a
 and 95% CIs of the associations between environmental risk score (ERS) and 

obesity comorbidities in NHANES 2003–2014 (n=9,529).

Obesity Comorbidities OR, 90th vs 10th percentile
(95% CI)

P-value

Hypertension 1.55 <0.0001

(1.28, 1.88)

Type 2 diabetes mellitus 3.63 <0.0001

(2.86, 4.66)

β, 90th vs 10th percentile P-value

(95% CI)

Systolic blood pressure, mmHg 2.22 0.001

(0.90, 3.53)

Diastolic blood pressure, mmHg 0.61 0.13

(−0.19, 1.40)

a
All models were adjusted for age, sex, race/ethnicity, education, smoking status, physical activity, NHANES cycles and urinary creatinine. 

NHANES complex survey designs were also taken into account in the models.
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